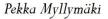
Waste Recycling – Sludge based fertilizer (Waste Recycling and WaterPro projects

Kokkola Material Week - ReKokkola 11th of November 2020 PhD Janne Pesonen Research Unit of Sustainable Chemistry University of Oulu - Finland

- 1. WaterPro Chemical precipitation of nutrients as struvite
- 2. Waste Recycling Sludge based fertilizers

WaterPro – Chemical precipitation of nutrients as struvite



University o<u>f Oulu</u>

Papers so far...

UNIVERSITATIS OULUENSIS

CHEMICAL PRECIPITATION IN THE SIMULTANEOUS REMOVAL OF NH₄-N AND PO₄-P FROM WASTEWATERS USING INDUSTRIAL WASTE MATERIALS

OULU 2020

C 742

- Pesonen, Janne; Myllymäki, Pekka; Vervecken, Gwen; Hu, Tao; Prokkola, Hanna; Tuomikoski, Sari; Lassi, Ulla: Use of calcined dolomite as chemical coagulant in the simultaneous removal of nitrogen and phosphorus, ChemEngineering, 2019(3)2:40.
- Myllymäki, Pekka; Pesonen, Janne; Tynjälä Pekka; Hu, Tao; Lassi, Ulla: The Use of Ca- and Mg-rich Fly Ash as a Chemical Precipitant in the Simultaneous Removal of Nitrogen and Phosphorus – Recycling and Reuse, Recycling, 2019(4)2: 14.
- Myllymäki, Pekka; Pesonen, Janne; Nurmesniemi, Emma-Tuulia; Romar, Henrik; Tynjälä, Pekka; Hu, Tao; Lassi, Ulla: Use of industrial waste material for the simultaneous removal of nitrogen and phosphorus from biogasification reject water, Waste and Biomass Valorization, 2020(11)4013-4024. https://doi.org/10.1007/s12649-019-00724-8
- Myllymäki, Pekka; Pesonen, Janne; Tynjälä Pekka; Hu, Tao; Lassi, Ulla: Use of paper mill sludge as chemical coagulant in the simultaneous removal of nitrogen and phosphorus, Desalination and Water Treatment, 2020(194)459-467.
- Pesonen, Janne; Sauvola, Emilia; Hu, Tao; Tuomikoski, Sari: Use of sidestream based MgSO4 as chemical coagulant in the simultaneous removal of nitrogen and phosphorus from wastewaters, Desalination and Water Treatment, 2020(194)389-395).

UNIVERSITY OF OULU GRADUATE SCHOOL UNIVERSITY OF OULU, FACULTY OF TECHNOLOGY;

KOKKOLA UNIVERSITY CONSORTIUM CHYDENIUS

Materials

Dolomite is a carbonite mineral composed of calcium magnesium carbonate $(CaMg(CO_3)_2)$

Used e.g. as a soil improver

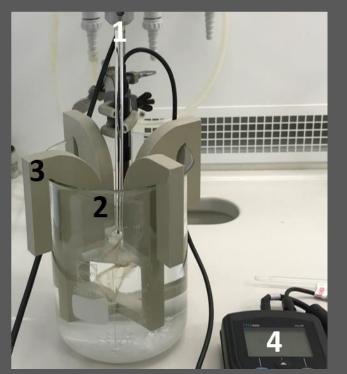
Fly ash is fine-grained, inorganic residue that is left behind after combustion at a thermal power plant

Contains mostly Ca, Mg, Al, and Si oxides in varying proportions (depending on the fuel used) Can be used as a fertilizer

Struvite (NH₄MgPO₄ · 6H₂O) Molar ratios Mg:P:N 1:1:1 Slow-release fertilizer

- Ca precipitates phosphate as hydroxylapatite -> the more Ca there is, the less struvite is formed
- Dolomite and fly ash was treated with H₂SO₄ to prepare MgSO₄ solution

Main components (XRF) of the dolomite and fly ash


	CaO (%)	MgO (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	FeO (%)	P ₂ O ₅ (%)	K ₂ O (%)	Na ₂ O (%)	TiO ₂ (%)	MnO (%)	Others (%)
Dolomite	37.9	16.5	10.4	3.1	3.5	0.1	1.1	0.2	0.3	0.1	26.8
Fly ash	36.9	14.2	17.7	8.1	8.9	1.6	0.5	0.5	0.3	0.3	11.0

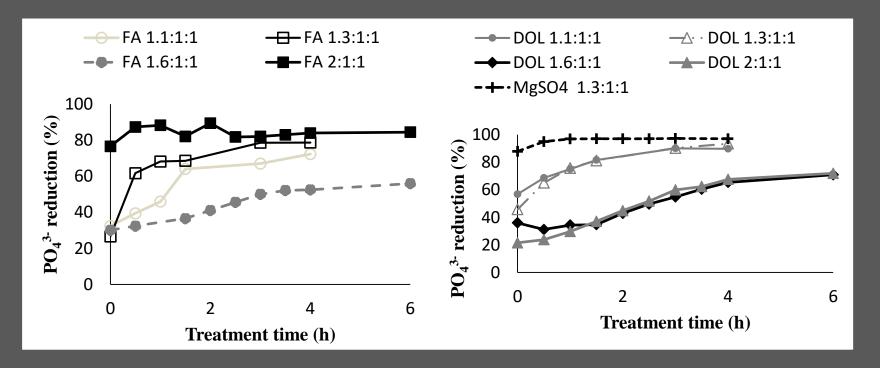
Mg, Ca and harmful element concentrations (ICP) of t	the
MgSO₄ solutions	

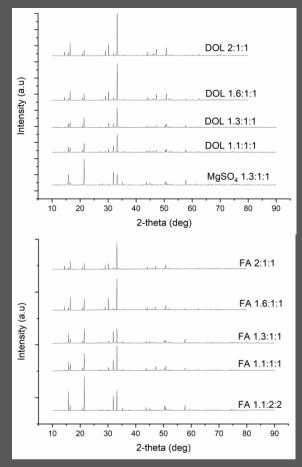
Sample	Ca (mg/L)	Mg (mg/L)	As (mg/L)	Cd (mg/L)	Cr (mg/L)	Cu (mg/L)	Ni (mg/L)	Pb (mg/L)	Zn (mg/L)
DOL based MgSO ₄	494	9430	3.94	0.10	0.97	3.41	1.81	0.14	2.79
FA based MgSO ₄	483	14500	0.08	0.01	0.64	0.59	1.21	0.04	1.32

Methods

Precipitation reactor consists of a curved blade (1) connected to a rotor; a 2 L decanter glass (2); stators (3); and a pH-meter (4)

- Precipitation of struvite:


- Molar ratios Mg:P:N of 1.1-2:1-2:1-2
- pH 9.0
- Room temperature (20 °C)
- Time 4-24 h
- Coagulant solution added to (NH₄)₂HPO₄ solution while stirring the solution at 450 rpm (1 minute)
- Constant stirring during experiments (50 rpm)
- Water samples taken every half an hour
- Analyzes:
 - Water samples: ICP, IC, and NH₄-selective electrode
 - Precipitate: XRD and SEM
 - Dolomite: SEM, XRF and TG-DSC
 - Fly-ash: SEM, XRF


Results: Phosphate removal

- Best phosphate removal was achieved with commercial MgSO₄ (97 %)
- Very good phosphate removal also with DOL
 1.3:1:1 (93.3 %) and DOL 1.1:1:1 (89.8 %)
- For FA the best removals were 84.5 % for FA 2:1:1, 82.5% for FA 1.1:2:2, and 78.7 % for FA 1.3:1:1

Precipitate characterization, XRD and yield

- All peaks associated with struvite
- The best yield was obtained with commercial MgSO₄ salt (90.4 %).
- The best yields for both DOL and FA were obtained with molar ratio 1.3:1:1, 77.5 % for DOL and 71.3 % for FA

Yields of the formed struvite for the corresponding molar ratios

Sample	Yield (%)				
FA 1.1:2:2	70.2				
FA 1.1:1:1	58.3				
FA 1.3:1:1	71.3				
FA 1.6:1:1	46.5				
FA 2:1:1	55.2				
DOL 1.1:1:1	73.8				
DOL 1.3:1:1	77.5				
DOL 1.6:1:1	54.1				
DOL 2:1:1	45.7				
MgSO₄ 1.3:1:1	90.4				

Yield = (total mass of the precipitate / theoretical mass of struvite formed) x 100

Summary – WaterPro

- MgSO₄ solution prepared from dolomite and fly ash and tested for struvite precipitation
 - Pure struvite obtained
 - The best struvite yields for both DOL and FA were obtained with molar ratio Mg:P:N 1.3:1:1
- Fly ash and dolomite based MgSO₄ solutions have great potential in the ammonium and phosphate precipitation
- Tests with authentic wastewaters, solubility tests and growth tests in greenhouses and fields should be conducted