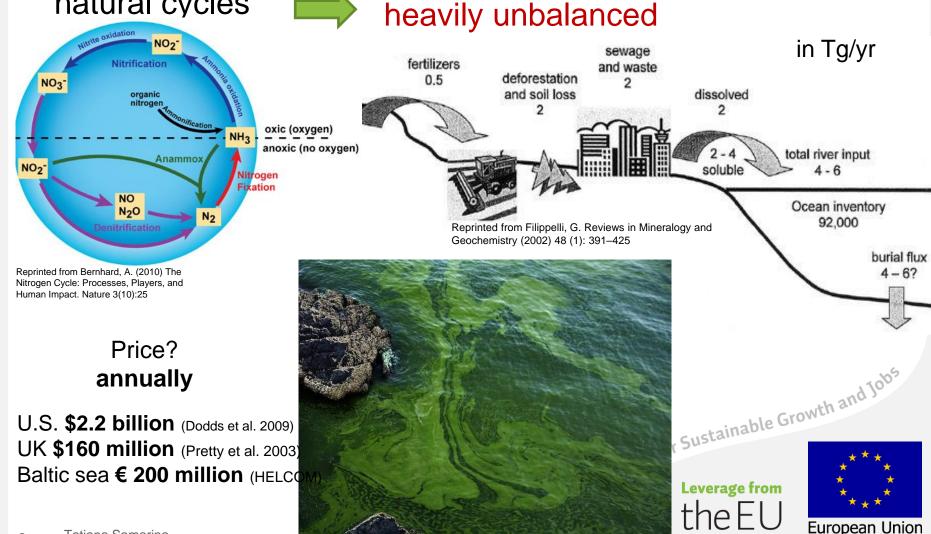
Nutrient recovery from wastewater streams:

new perspectives and technical solutions

Tatiana Samarina

17.11.2021



Motivation

The human alteration of nitrogen and phosphorus global natural cycles

2014-2020

European Regional Development Fund

Motivation

>400 coastal dead zones worldwide

- Phosphorus is a "**strategic**" commodity located in just few countries and deposits included into the list of critical materials in **2014** up 80% of mined phosphorus is lost the extraction process
- Recovery could be valuable in near future
 will be depleted within the next 45–100 years
 as discharge limits become stricter
- Possibility to cover 50% of a P-market

Motivation

- developing less energy-demanding process for nitrogen capturing – Haber-Bosch process accounts for approximately 1% of global energy consumption;
- to reduce GHG emission: substantial concomitant as Haber-Bosch process and WWTP facilities (biological treatment, 3% of all GHG globally);
- to reduce nutrient leaching into natural water bodies
- transition to circular economy

Benefits

Renewable fertilizers or industry feedstocks Improving operation and performance at WWTP
Improving food security and social equity
Business opportunities

Leverage from

17 14 2021

Nutrient-contaminated streams

Agriculture, fishery, forestry

- Facultative lagoons
- Air purification cattle farms
- Overfertilized fields
- Aquaculture operations
- Ditches and peat bogs

Municipal and urban wastewaters

- Run-off and storm waters
- Wastewater treatment plants

Industrial wasteand processing waters

- Reject waters of biogas stations
- Landfill leachates
- Textile industry processing waters
- Paper mills grey waters
- Food industry (meat and beverage)

Low-laden or High-laden with nutrients

Diffuse or centralized source

Complexity of matrix

Emerging pollutants

Energy demand

Public perception and acceptance

Legislation

N/P ratio

Nutrients in municipal wastewater

Globally

380 billion m³/a of wastewater

Major nutrients in wastewater, worldwide, annually:

16.6 million metric tonnes of N

6.3 million metric tonnes of K

3 million metric tonnes of P

Recovered these nutrients could offset of global demand:

14.4% for N;

6.8% for P

18.6% for K

Nationally*

0.5 billion m³/a of wastewater

Nitrogen load in sewage systems 32 670 ton/a and 66% of it is removed and lost in current treatment processes, rest in inland waters

Phosphorous load in sewage systems 4 300 ton/a and 3%** of this was recycled

In 2017, a total of app.155 tonnes of **P** and app. 11,090 tonnes of **N** were discharged from municipal wastewater treatment plants.

theoretically generated revenue globally:

\$9.0 billion from the recovery of N,

\$2.3 billion from P,

\$2.3 billion from P.

Energy, chemical consumption, sludge production critical environmental benefits such as minimising eutrophication

Possible business cases

SOLUTION is

Combination of mature techniques

Adsorption

New geopolymer adsorbent from low-cost sources: unique properties and steady quality

adsorption-desorption cycles without reloading

the max enrichment factor with min reagent use

Air stripping **Membrane separation**

Independence from initial concentration pH already suits for this technologies Twice lower temperature could be used Minimize the dimensions of the setup Lower energy consumption

Design of the Treatment Process

Objects

Run-off waters and effluents
 Diluted solutions with complex matrix < 0.2 g N/L

1 stage

- Nitrogen removal
- Adsorption by new geopolymers

2 stage

- Nitrogen preconcentration
- Desorption with a regeneration solution

3 stage

- Nitrogen recovery
- Air-stripping or membrane technology for the regeneration solution purification

Programme for Sustainance Com

Leverage from

the EU

2014-2020

le Growth and Jobs

Stage 1: Design of cost-effective adsorbents

Cost-effective adsorbents

Source

Abundant

Low cost

Calcined clay Pulp fibre sludges BFS Fly ash F

Process

Easy to handle

Fast removal

High capacity

Granulated forms Contact time

Waste management

Easy to regenerate

Minimal liquid waste discharge

Secondary valuable product

Regeneration solution in the loop mode Adsorbent recycling Inorganic polymers: eco-friendly

gramme for Sustainable Growth and Jobs **Leverage from**

Geopolymers for ammonium concentration

Raw material for geopolymer preparation:

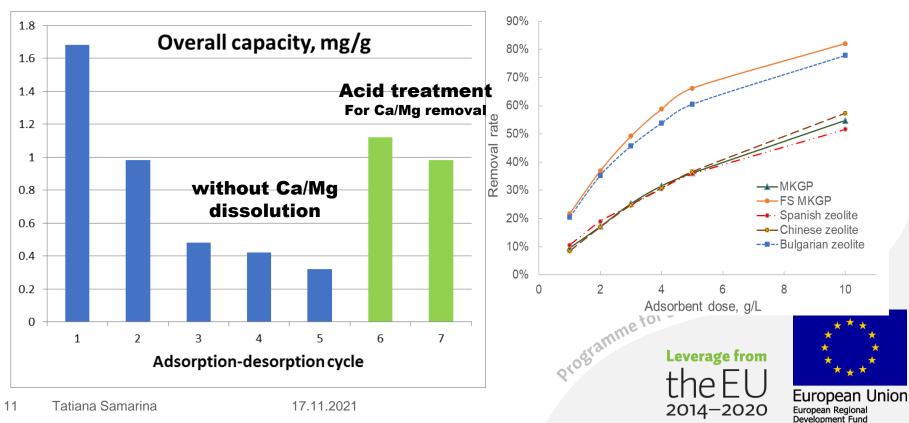
- paper mill sludge contained kaolinite as paper additive; FS MKGP
- calcined kaolinite (Luukkonen et all. 2016)

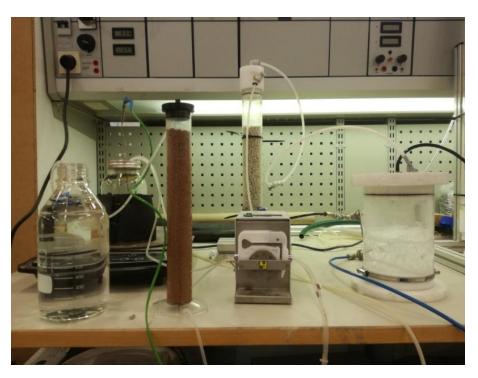
To recover clay and transform it to form needed, paper mill sludge was ignited, and the remaining kaolinite calcined at 750°C.

commercially available metakaolin (Aquaminerals Finland Oy); MKGP

To prepare reference geopolymer material, metakaolin was geopolymerized in accordance with standard procedure (Luukkonen et al. 2016).

Adsorbent	Capacity mg/g	Regeneration
MKGP	1,3	5M NaCl, pH 12
FS MKGP	3,7	5M NaCl, pH 12 + acetic acid
Zeolite (Spain)	2,2	5M NaCl, pH 12 + acetic acid
Zeolite (China)	1,3	5M NaCl, pH 12
Zeolite (Bulgaria)	3,7	5M NaCl, pH 12 + acetic acid


Regeneration study


Sample	Run-off	Lake water	Mine water		WWTP effluents	
Campic			Point 1	Point 2		
Adsorbent					Before	After
MKGP	68 %	64 %	44 %	45 %	54 %	52 %
FS MKGP	92 %	95 %	69 %	72 %	82 %	81 %
Spanish zeolite	61 %	58 %	32 %	38 %	51 %	56 %
Chinese zeolite	55 %	58 %	17 %	21 %	57 %	57 %
Bulgarian zeolite	87 %	84 %	52%	60%	77 %	78 %

adsorbent dose 10 g/L

grain size 63-125 µm

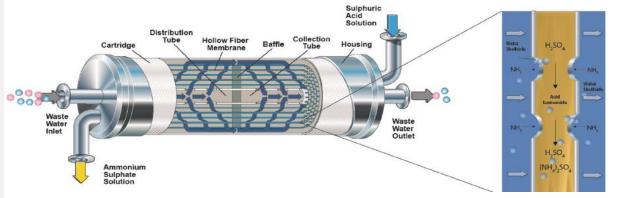
contact time 3h

Geopolymer adsorbents:

Adsorption-desorption cycles were piloted on local WWTP Kajaanin Vesi

Lab-scale setup for air-stripping evaluation:

adsorption and stripping cycles analysis alkali and acid dosage optimal temperature testing
liquid and air supply rates
hydraulic loading optimization


Results

Temperature 45±5°C was enough to reached conversion rate 91 %.

After the regeneration solution was purified, it was used over 5 times for desorption procedure.

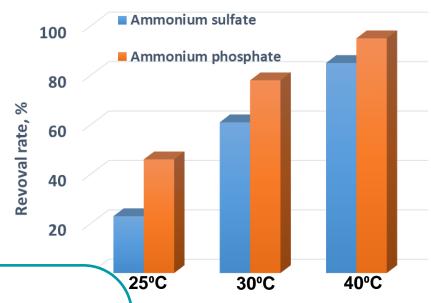
Transmembrane Chemical Absorption

Results

3M Liqui-Cel® membrane contactor provided by manufacturer for piloting on WWTP

Receiving acids: phosphoric or sulfuric

Programme for Sustainable Growth and Jobs

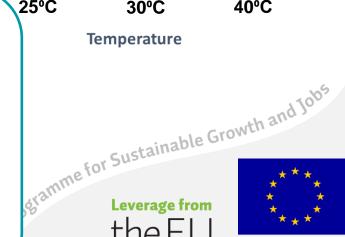


Recovery of ammoniacal nitrogen Transmembrane Chemical Absorption

Final product:

ammonium sulfate

ammonium mono(di)phosphate



Optimized conditions:

- 100 L/h shellside flow with pH ≥ 11
- 60L/h lumenside feed flow with pH ≤ 5,6
- working temperature 40°C.

Lumenside absorbtion liquid:

• Sulfuric or phosphoric acids (tech.) up to 5%.

Prebooked for Karelia CBC piloting (SUSWAM, REMAC)

17.11.2021

First piloting for WaterPro

Nutrient removal from run-off waters

What else could be beneficial?

Unique properties

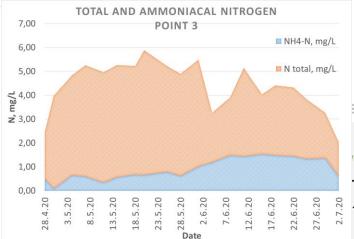
Buoyancy

High porosity

Lightness but hardness

vth and Jobs

Work co-funded by of Maa- ja vesitekniikan tuki (№ 13-8271-17).



TOTAL AND DISSOLVED PHOSPHOROUS POINT 3 0,300 Dissolved P, mg/L 0,250 ■ Total P, mg/L 0,200 0,150 0,100 0,050 0,000

Work co-funded by of Maa- ja USILEKNIIKAN tuki
(Nº 13-8271-17)

L

Stainable Growth and 1000

After 10 weeks of piloting

Total P less than 0,03 mg P/L PO₄-P less than 0,01 mg P/L

~60%

Total N less than 1 mg N/L NH₄-N less than 0,05 mg N/L

~80%

					Adsorbent	
				MKGP	LECA-MKGP	
Chemicals	per 1 ton	per kg		per 40 kg	per 10 kg	FSMKGF
BFS	55	0,055		-		
NaSi	100	0,100		0,5	0,84	0,5
NaOH	180	0,180		1,08	0,45	1,08
MK	200	0,200		8	1,5	
LECA, m3	60	0,060			0,6	
Perlite, m3	35	0,035				
Cork	1200	1,200				
kaolinite clay	50	0,050				
Supplies	1h					
water	2,25	0,003				
electricity	15	0,177		2,66	2,66	14,66
				12,24	6,05	16,24
			EUR per			
			1ton	306	151	406

Work co-funded by of Maa- ja vesitekniikan tuki (№ 13-8271-17).

2014-2020

Thank You for your attention!

Dr. Tatiana Samarina Projektitutkija/ Project researcher

KAMK

Ketunpolku 1, rakennus
Tieto 2, FI-87100 Kajaani,
Finland
GSM +358 44 7157030
tatiana.samarina@kamk.fi and 1
www.kamk.fi

Programme for Seven

